# Sir, Yeh Physics Hai Kya?! Where Every Law of Motion Has an Face

Where Every Law of Motion Has an Emotion

Title: Sir, Yeh Physics Hai Kya?!

Author: *Titus Kujur* © 2025 Titus Kujur

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopying, recording, or otherwise—without the prior written permission of the author, except for brief quotations used in reviews or critical articles.

This book is a work of creative non-fiction. While based on real educational experiences, characters, dialogues, and classroom situations have been dramatized for humour and narrative effect. Any resemblance to actual persons, living or deceased, or to real institutions, is purely coincidental.

Cover Design © 2025 by *Titus Kujur* Illustration: *Oil painting concept by Titus Kujur* Book Design & Layout: /*Titus Kujur* ]

First Edition, 2025

#### ACKNOWLEDGEMENTS

"Teaching is the only profession where you can hear your ideas echo in other hearts."

This book exists because of my students — their relentless "why," their half-scribbled notes, their perfectly timed yawns.

They are the true co-authors of every joke, every metaphor, every sigh between two laws of motion.

To the ones who asked questions that weren't in the syllabus — thank you.

You reminded me that science begins not with answers, but with curiosity.

To those who giggled when current refused to flow, and who still clapped when it finally did — you taught me that joy is the best conductor of learning.

To my colleagues — who patiently endured my chalk-dust monologues about "making physics fun" — thank you for believing that laughter can exist in the lab. To the custodians of classrooms everywhere — who clean the benches, erase the boards, and quietly ensure knowledge has a home — you are the unsung constants in this entire equation.

To my family — who never complained when I tested out puns at the

dinner table, or scribbled diagrams on napkins — your patience is proof that love, like energy, can neither be created nor destroyed.

And finally —
to every reader holding this book, whether you're a
student, a teacher, or a curious soul —
I owe you the most luminous thanks.
Because by reading this, you've joined a journey that
started with chalk and ended with starlight.

Remember: you are made of atoms that once powered suns, and those atoms are now reading about themselves. That's not irony — that's poetry.

"The classroom may end at the wall, but the lesson continues into the universe."

# **Table of Contents**

| PREFACE                                      | . Vii |
|----------------------------------------------|-------|
| PROLOGUE                                     | X     |
| CHAPTER 1 The Great Physics Fear Epidemic    | 1     |
| CHAPTER 2 Newton Didn't Want You to Cry      | (7    |
| CHAPTER 4 Sir, Derivation Yaad Nahi Ho Raha! | .40   |
| CHAPTER 5 Motion in a Straight Line          | 52    |
| CHAPTER 6 Laws of Motion                     | . 62  |
| CHAPTER 6 Laws of MotionCHAPTER 7 Friction   | . 84  |
| CHAPTER 8 Work, Power and Energy             | 100   |
| CHAPTER 9 The Law of Conservation            | 115   |
| CHAPTER 10 Simple Harmonic Motion            | 132   |
| CHAPTER 11 Gravitation                       | 146   |
| CHAPTER 12 The Universe in Motion            | 160   |
| CHAPTER 13 Rotational Dynamics               | 172   |
| CHAPTER 14 Gravitation and Planetary Motion  |       |
| CHAPTER 15 Mechanical Energy                 | 199   |
| CHAPTER 16 Heat and Temperature              | 214   |
| CHAPTER 17 Thermodynamics in Action          | 230   |
| CHAPTER 18 The Kinetic Theory of Gases       | 244   |
| CHAPTER 19 Waves and Sound                   | 260   |
| CHAPTER 20 Electricity and Current           |       |

| CHAPTER 21 Magnetism and Moving Charges 292     |
|-------------------------------------------------|
| CHAPTER 22 Electromagnetic Induction 308        |
| CHAPTER 23 Electromagnetic Waves                |
| CHAPTER 24 The Dual Nature of Matter 343        |
| CHAPTER 25 The Atom and the Nucleus 359         |
| CHAPTER 26 Radioactivity and Nuclear Energy 376 |
| CHAPTER 27 Semiconductor Electronics            |
| CHAPTER 28 Communication Systems                |
| CHAPTER 29 The Human Eve                        |
| CHAPTER 30 The Universe                         |
| EPILOGUE459                                     |
| OTHUS KLINIT 2025                               |

#### **PREFACE**

"Every subject is difficult until it learns to smile."

When I first began teaching physics, I realized something curious —

the subject wasn't the problem; the silence around it was.

Equations stood on the board like tall, intimidating strangers.

Students stared at them the way villagers stare at UFOs — with suspicion and mild panic.

And yet, beneath all the confusion, I saw something magical: *wonder* — raw, unrefined, waiting to be sparked.

So, I decided to rewrite the way physics was felt.

This book was born not out of frustration, but laughter. Every class, every question, every "Sir, mujhe samajh nahi aaya!" added a page.

What you hold now isn't a textbook — it's a classroom caught in motion,

filled with Hinglish jokes, dramatic chalk dust, and the scent of late-bell panic.

I didn't want to write a book that *teaches physics*. I wanted to write one that *befriends it*.

Here, Newton shares space with nonsense, and Einstein occasionally cracks a joke. Every concept carries a punchline, every chapter ends with a heartbeat.

This is a book for the student who says, "Sir, mujhe formula yaad nahi rehta."
To them, I say —
you don't need to remember physics,
you need to recognize it.

It's already there —
in your laughter, in your heartbeat,
in the way you balance your bike or pour your tea.

Physics isn't trapped in equations; it's written in your gestures.

Over thirty chapters, I've tried to turn the serious into the soulful, to show that gravity and giggles can coexist, that motion and mischief share the same laws, and that the universe doesn't always need reverence — sometimes it just needs company.

So, if you find yourself laughing halfway through a concept, good.

That means you've understood more than the equation—vou've understood its emotion.

This isn't just a physics book. It's an apology to every student who ever said, "Sir, mujhe science pasand nahi."

Because maybe — just maybe — no one ever told them that science could *love them back*.

"You don't study physics. You fall into it like light falling on a mirror, and finding itself beautiful."

OTHUS KLINIT DO NOT DISTRIBUTE

#### **PROLOGUE**

"Every class begins with silence.

The rest is just the universe trying to answer it."

There's a strange kind of stillness that hangs in the air before a physics class begins.

The benches squeak.

The chalk waits like an unused wand.

The fan hums softly, uncertain whether to spin faster or quit.

And somewhere in that faint, electric silence a teacher walks in with a heart full of stories and a head full of equations.

Physics, they say, is the study of motion. But every good physics class begins with stillness — that single moment when curiosity holds its breath.

You can almost feel it — the quiet buzz of possibility, the way a thousand questions hide behind sleepy eyes.

Some students look ready.

Some look terrified.

One, inevitably, whispers, "Sir, yeh optional subject hai kya?"

And that's when I smile.

Because this isn't just another subject.

It's the most beautiful accident ever discovered — the story of how the universe learned to speak in logic and laughter.

When I first taught physics, I thought I was explaining laws.

But what I was really doing — was introducing friends who had never met.

On one side: students armed with pens, notebooks, and mild suspicion.

On the other: Newton, Faraday, Einstein — ancient wizards hiding inside equations.

It was awkward at first.

But then, someone laughed at my bad joke about inertia, and suddenly, physics didn't feel so heavy anymore.

Let's admit it — physics has an image problem.

The moment you say the word,
half the room looks inspired,
the other half looks ready to file for academic asylum.

But fear, I've realized, doesn't come from difficulty. It comes from *distance*.

We fear what we don't feel close to.

And physics, for too long, has been kept behind glass too formal, too flawless, too foreign.

So I broke the glass.

And there it was — motion, magnetism, mirrors, all waiting patiently to be heard like old friends.

Every classroom has its own perfume. Ours smells of chalk dust, ambition, and occasional panic.

Somewhere in that mix lives the magic of discovery. It's the smell of minds catching fire.

The smell of "Aha!" moments disguised as sighs of relief.

I've seen it happen: that sudden sparkle when a student realizes refraction isn't just a diagram — it's how raindrops paint rainbows.

That's when physics stops being theory and becomes theatre.

A performance of light, force, and faith.

Sir: Beta, tum log physics se darte kyun ho?
Soumya: Sir, kyunki formulas yaad nahi rehte!
Sir: Arre, formula yaad karne ke liye nahi hota —
samajhne ke liye hota hai!
Debasish: Sir, toh fir marks ka kya?
Sir: Beta, marks toh side effect hain — asli medicine toh samajh hai!

The class laughs nervously—and the fear begins to melt, like ice meeting sunlight.

This book isn't written to make you a topper. It's written to make you *talk* to physics.

To make you argue with it, laugh at it, question it, fall in love with it —

the way you would with a stubborn friend who's secretly brilliant.

It's for the student who stares at a circuit diagram and wonders why it looks like abstract art.

For the one who thinks sound waves are ghosts, and mirrors have moods.

For the one who doesn't just want the right answer, but wants to know why the answer feels right.

This book is your permission slip to be curious — in Hinglish, in humour, in honesty.

From the fall of an apple to the rise of galaxies, from the hum of a fan to the silence of space — everything is physics pretending to be poetry.

Every formula here is a story.

Every diagram, a confession.

Every "Sir please repeat" is a small echo of eternity.

The universe isn't something that happened *to* us. It's something that happens *through* us.

So, before we dive into motion, waves, or light — take a moment.

Look around.

Feel the weight of your pen, the hum of the fan, the pulse in your wrist.

Congratulations — you're already studying physics. You just didn't know it yet.

I promise you this —
you'll laugh more than you expect,
you'll think deeper than you planned,
and you'll realize somewhere between page and pulse
that this isn't a subject —
it's a mirror.

It shows you how the world moves, how you move, and how, in the end, everything — even light — finds its way home.

So, dust off the fear.
Sharpen your pencils, your curiosity, your humour.
The bell's about to ring.
The class has already begun.

"Welcome to Physics —
where equations dance,
laughter counts as data,
and every law hides a little bit of love."

OFITHS KAINT DON'S TONE THE STATE OF THE STA

#### CHAPTER 1

## The Great Physics Fear Epidemic

"Fear is not in the subject, beta — it's in the syllabus."

The bell rings.

The corridor echoes with footsteps, whispers, and the distant cry of "Attendance de do yaar!"

You step into the physics class.

The teacher (that's me, most likely) walks in, holding a duster in one hand, and a heart full of hope in the other.

Thirty students look up, some with sleepy eyes, some with straight faces, and a few with the expression of people about to face a firing squad.

And the moment I say the word **"Physics"**, half of them stop breathing.

## The Silent Scream

There's a strange silence that falls when you utter "physics" in any Indian classroom.

It's not the silence of respect.

It's the silence of **terror** — the kind soldiers feel before a war, or students feel before a board exam.

One brave soul from the last bench mutters, "Sir, yeh toh rocket science lagta hai."

And I smile.

Because that's the problem — it's not rocket science. But students treat it like dark magic.

If I had a rupee for every time I've heard, "Sir, mujhe physics samajh nahi aata,"

I could probably fund ISRO's next Mars mission.

## The Epidemic of Fear

You know what's funny?

Nobody is born afraid of physics.

As kids, we throw balls, jump from beds, spin tops, play with magnets — and do physics without knowing it

Then school happens.

Suddenly, motion becomes "uniform linear displacement under constant acceleration."

And that's when the epidemic begins.

Fear spreads silently — like Wi-Fi.

One student says, "Physics bahut tough hai," and within minutes, the whole class gets infected.

It's a psychological chain reaction.

A formula of fear.

A derivation of doom.

I've seen brilliant kids tremble at the sight of Newton's laws — as if the third law would push them out of the classroom.

## Where It All Goes Wrong

The real problem isn't physics.

It's how we've been taught to see it.

We're told physics is about formulas, equations, derivations — pages after pages of symbols that look like an alien's grocery list.

But in truth, physics is the **poetry of the universe** written in mathematics.

It's the rhythm in the raindrop.
The logic behind a falling leaf.
The secret pattern in the way your heart beats.

Yet what students see are "3-mark numericals" and "5-mark derivations".

They memorize equations without asking why they work. They mug up concepts without feeling them.

And when understanding doesn't come, fear does. Because fear is what fills the gap between knowledge and understanding.

# The Mugging Myth

I always tell my students, "Physics is not a song lyric. You can't mug it up."

And they look at me like I've just cancelled Diwali.

See, in subjects like History, mugging might still help you survive —

"Battle of Plassey, 1757 — check."

But in physics, mugging is like putting a band-aid on a black hole.

If you memorize without understanding, your brain will revolt during exams.

You'll stare at the question paper, and your mind will whisper,

"Beta, hum toh sirf formula yaad kiye the... yeh situation kya hai?"

And that's it.

Your 70 marks go into orbit.

I once had a student who memorized every single equation — but when I asked, "What is acceleration?", he said, "Sir, it's when the car starts crying 'vroom vroom'."

Technically, not wrong — emotionally, brilliant — scientifically, tragic.

## The Concept Culture

Here's what I believe:

If you truly understand the **concept**, the marks will follow you like a lost puppy.

Physics rewards the curious, not the clever. Ask questions.

Even the "stupid" ones.

Why does light bend? Why does time slow near gravity? Why do our ears pop in elevators?

Every great scientist was once a kid who refused to stop asking *why*.

So when I teach, I tell stories.

I compare atoms to classrooms, electrons to students, and forces to the strict class monitor.

And suddenly, I see eyes light up.

Because when learning feels like living — it sticks.

## Sir vs. Student: A Daily Drama

Let me recreate a small scene.

Sir (me): So, beta, what is Newton's first law?

**Student:** Sir, it says that an object will remain at rest or in uniform motion unless acted upon by an external force.

Sir: Very good! Now explain it.

**Student:** Sir... uh... object... um... rest... external force...?

**Sir:** So basically, you know the *words* but not the *world* behind them.

See the problem?

The words have been memorized, but the idea — the *soul* — is missing.

That's like knowing the lyrics to a song but not the tune.

You can't hum it. You can't feel it. You can only repeat it.

That's why, in my classes, I sometimes throw a ball, kick a chair (gently), or drop a pen — not to scare students, but to show them what Newton actually meant.

Because when you see physics in motion, fear evaporates.

## How Fear Disguises Itself

Physics fear doesn't always look like panic. Sometimes it looks like excuses.

"Sir, I'm not a science person."

"Sir, I understand theory, but not numericals."

"Sir, I was never good at math."

"Sir, my stars don't align with physics."

But deep down, these are shields.

Defense mechanisms.

Because nobody wants to admit that they're scared of something invisible — a concept, an equation, a law that feels too big to grasp.

Yet that's exactly what fear is: a misunderstanding that grew too big.

## Physics Is Everywhere

Let me tell you something revolutionary. You've been doing physics since birth — you just didn't know it.

When you throw a cricket ball — Newton smiles. When you stir tea — rotational motion waves at you. When your mom uses a pressure cooker — thermodynamics says, "Hello!"

When you drop your phone — free fall joins the party. When you look at the rainbow — optics shines back.

The universe has been whispering physics to you all along.

You just need to start listening.

The truth is, physics isn't a *subject* — it's a *way of noticing*. The art of asking, "Why does this happen?" every time something moves, falls, glows, or explodes.

## The School System's Comedy Show

Now, let's admit — our education system doesn't make things easier.

We teach physics as if we're training robots, not thinkers.

Imagine explaining love like this:

"Love is a temporary hormonal imbalance caused by external attraction resulting in internal chaos."

That's how we teach motion, light, and energy.

No wonder students run away.

We've removed the romance from learning. We've buried wonder under homework.

And physics — which should have been the most thrilling adventure — now feels like a punishment for curiosity.

## The Fear Factory

Let's visit an imaginary classroom.

**Teacher:** "Students, next week we have a test on Motion in a Straight Line."

Class: collective groan

Teacher: "It's very simple — three equations, two

graphs."

Students: already panicking

Then the teacher writes  $v^2 = u^2 + 2as$  on the board. And instantly, one student faints, another starts calculating his destiny, and a third one begins bargaining with God.

But here's the truth — fear is a formula too. The more you feed it, the faster it accelerates.

So the only way to stop it?

Hit it with curiosity equal and opposite reaction.

# The Psychology of Physics

There's an unspoken rule in classrooms: "If one student looks scared, ten others will follow."

Fear spreads faster than light.

Confidence doesn't.

That's why, when one student answers wrong, the whole class gives up.

But let me tell you something magical — physics is built on *wrong answers*.

Galileo, Newton, Einstein — they all began by being wrong.

By asking questions nobody dared to ask.

By failing spectacularly, until the universe whispered its secrets.

So if you make a mistake, congratulations — you're doing real physics.

Because real learning isn't about being right. It's about *getting curious enough to fix your wrongs*.

## The Real Definition of a Good Physics Student

A good physics student isn't someone who gets 95%. It's someone who looks at the stars and wonders, "How do they stay there?"

Who sees a car skid and thinks, "That's friction losing hope."

Who hears thunder and imagines the energy equation balancing itself in the sky.

That's the beauty of physics — it turns ordinary eyes into eyes that see *why*.

#### From Fear to Freedom

Let me tell you about a boy named Yasim. He hated physics. Said it made him feel "stupid."

Every time I explained something, he'd nod, but I could see it — that silent storm behind his eyes.

So one day, I told him, "Yasim, forget the syllabus. Tell me what confuses you most."

He said, "Sir, how can empty space bend? How can gravity pull without touching?"

I smiled. Because that's it — the question that launched Einstein into history.

We spent an hour just talking about space-time, using a bedsheet and a cricket ball as props.

He went home that day and told his mother, "Physicse isn't scary, it's weird!"

That was his breakthrough. Fear replaced by fascination.

He scored 88 that year. But his real success wasn't marks
— it was curiosity.

## My Theory of Learning

Every student learns at their own speed — some linearly, some exponentially, and some only when threatened with unit tests.

That's okay.

The universe doesn't move at one rate, either.

You just need *momentum* — not perfection.

Keep moving. Keep asking.

Don't stop because someone else is ahead.

Even light has to travel to reach its destination. You're no less bright.

## How to Break the Fear Cycle

Here's my 5-step formula to defeat the Physics Fear Epidemic:

- Stop pretending you understand.
   Admit confusion. That's where clarity begins.
- 2. **See, don't memorize.**Relate every concept to a real-life example.
- 3. **Ask "Why?" until someone cries.** Curiosity is your only weapon.
- 4. **Draw, doodle, act.**Physics is visual. Make it come alive.
- 5. Laugh. Always.

  Because if you can laugh at physics, you can learn it.

Fear hates laughter

## The Teacher's Confession

Sometimes I feel like a magician trying to show a trick that nobody wants to see.

I pull out forces, lights, waves — and students still look like I just opened a tax form.

But I don't blame them.

Because I was once that student too.

Terrified. Confused. Angry that things didn't make sense.

Until one day, I realized — the universe doesn't owe me easy answers.

It only promises beauty to those who keep looking.

That's when physics became poetry.

And teaching it became love.

"Physics doesn't make life hard — it just explains why it's already hard."

## The Concept Capsule

- Fear of physics = misunderstanding of meaning.
- Mugging ≠ understanding.
- Concepts are the true syllabus.
- Curiosity kills confusion.
- Physics is life, just written in equations.

# The Challenge

Next time someone says, "Physics is too hard," smile and say,

"Bhai, it's just the universe explaining itself — in style."

Because from now on, we're not just learning physics — We're going to laugh through it, question it, twist it, and own it.

Welcome to the class where Newton meets nonsense, equations meet entertainment,

and every chapter reminds you — that learning is not supposed to hurt, it's supposed to make you wonder.

#### **End Note**

So, dear student, as you sit with this book — don't just read it.

Talk to it. Laugh at it. Argue with it.

Physics isn't a story of formulas — it's a conversation between you and the universe.

And trust me — the universe is dying to talk back.

#### **CHAPTER 2**

## Newton Didn't Want You to Cry

"Every action has an equal and opposite reaction... unless it's your marksheet reacting to your study hours."

## The Apple That Changed Everything

It all began with an apple.

Not the iPhone kind. Not the wax-coated supermarket kind.

Just a humble, red apple falling from a tree—and hitting Isaac Newton right on his curiosity.

At least, that's what the legends say.

Historians argue that the apple never actually bonked his head — but I like to imagine it did.

Because only a hard fruit can awaken a soft genius.

That one fall gave birth to gravity — or rather, to our understanding of it.

The universe had always been pulling everything towards everything. Newton just noticed the pull and said,

"Wait a minute. Something's fishy here. Why doesn't the Moon fall on Earth?"

And with that innocent question, he ended up giving us the laws that now make every student cry.

But here's the truth: Newton didn't want you to cry. He wanted you to wonder.

## The Boy Who Sat Under Trees

Isaac Newton wasn't born in a lab or surrounded by equations.

He was born premature, weak, and almost expected not to survive.

But the universe — being the drama queen it is — decided to keep him alive to mess with every future generation of students.

As a boy, Newton was quiet, awkward, and often bullied. He didn't speak much, but his mind was constantly spinning — not socially, but scientifically.

He'd build tiny windmills, play with prisms, and carve wooden clocks that ran on water.

While other kids threw stones, he calculated their trajectories.

Newton wasn't trying to be a genius.

He was just trying to *understand* why the world behaved the way it did.

That's what makes him special — his curiosity was greater than his comfort.

## The Lazy Genius Myth

People think Newton was hardworking 24x7, surrounded by test tubes and lightning.

Wrong.

Newton was lazy.

The kind of lazy that sits under a tree all day — and ends up discovering gravity.

That's the *right kind of lazy*: when your body rests but your mind runs marathons.

He observed instead of memorizing. He wondered instead of worrying. And that's the core lesson of this chapter: **Observation** beats memorization every single time.

So the next time someone calls you lazy for staring at clouds or daydreaming, tell them:

"Even Newton did that. Main toh gravitational thought process mein hoon."

#### The Birth of the Laws

Now let's talk about the famous three — the holy trinity of motion.

The three laws that made Newton immortal... and made half the students mortal.

# First Law - The Law of Laziness

"An object at rest stays at rest, and an object in motion stays in motion unless acted upon by an external force."

In simple Hinglish:

If you're chilling on your bed and nobody calls your name — you'll continue chilling.

But the moment mom yells, "Get the remote!" — external force applied — motion starts.

This law defines *inertia* — the tendency to resist change. Your body, your mood, your Monday mornings — all governed by inertia.

Even teachers have it: once they start explaining a derivation, they can't stop until the bell rings.

Newton's first law isn't about motion alone — it's about *habit*.

We resist change — physically, emotionally, mentally. And that's why this law is so human.

Inertia is not laziness — it's stability. Until life (or mom) applies a force.\_\_\_\_\_\_

## Second Law - The Law of Effort

"The rate of change of momentum of an object is directly proportional to the force applied, and takes place in the direction of that force."

Okay, enough fancy words. Let's make it real.

Imagine you're pushing a shopping cart.

Empty — easy.

Full— tough.

You need more force.

Simple translation:

Force = mass  $\times$  acceleration. (F = ma)

Now let's bring emotion into it.

The heavier your problems (mass), the more force (effort) you need to move ahead. But once you start accelerating, momentum kicks in and you become unstoppable.

That's Newton's second law applied to life. istribute Effort always converts into motion. Eventually.

If you keep pushing, you move. If you stop pushing, you don't.

And yes — you can calculate how hard to push, but sometimes the heart knows before the formula does.

## Third Law – The Law of Karma

"For every action, there is an equal and opposite reaction."

Or as Indian parents would phrase it:

"Padhai nahi karega, toh result mein dikhega."

Throw a ball — it bounces back. Push a wall — it pushes you. Say something rude — someone tweets about it.

Newton didn't just describe motion. He described morality.

This law applies everywhere — in physics, in relationships, in politics.

Whatever you send out into the world — force, kindness, or nonsense — returns in equal measure.

So yes, even karma follows F = ma.

## Newton's Notebook: Where Ideas Exploded

There's something deeply poetic about how Newton worked.

He didn't have fancy labs or YouTube channels explaining "Top 10 Hacks for Motion."

He had a candle, ink, and endless curiosity. He'd write till morning, scribbling formulas nobody understood yet.

During the plague lockdown (yes, even he had one), Newton stayed home for nearly two years. While the world panicked, he thought. While others waited, he wondered.

By the time he returned to Cambridge, he had discovered:

- Calculus (sorry, students)
- Optics (rainbows explained)
- Laws of Motion (life ruined for future generations)
- Universal Gravitation (the big pull of everything)

If you think your lockdown was unproductive, just remember — Newton invented an entire universe while sitting indoors.

## The Gravity Revelation

Let's pause on gravity — because it's not just about falling apples.

It's about falling *in love* with the idea that the universe has structure.

Newton realized that the same force pulling the apple to Earth is keeping the Moon in orbit.

That means — everything attracts everything. No object is truly alone.

Beautiful, right?

The cosmos is a giant web of invisible affection.

We are all pulling on each other — not emotionally, but literally.

Right now, your pen is pulling on your notebook, your notebook is pulling on your table, and you're pulling on the entire planet (though the Earth wins, obviously).

If that doesn't humble you, nothing will.

## Why Students Hate Newton

Let's be honest — Newton's laws are like your school rules: logical but painfully enforced.

Every motion problem begins with "A body starts from rest..."

and ends with "Find acceleration, time, and depression level of the student."

Students hate Newton because his laws reveal the uncomfortable truth:

You can't move unless something moves you.

You can't change unless a force acts.

That's terrifying.

Because it means your stagnation is not bad luck it's physics.

But here's the twist — once you understand it, it's empowering.

Because you can be that force.

## The Emotional Side of Equations

Physics is emotional poetry in disguise. Every equation tells a story of struggle, effort, and balance.

 $F = ma \rightarrow effort$  creates motion.

 $W = F_s \rightarrow hard work produces results.$ 

 $P = W/t \rightarrow$  success is about consistency over time.

Even Newton's third law is a metaphor for empathy — whatever you give, you get.

When I teach these laws, I see it — the moment when students stop seeing formulas and start seeing reflections of life

That's when fear melts.

Because behind the math, there's meaning.

#### The Great Classroom Debate

#### Scene:

Class 11, Tuesday morning.

Topic: Newton's Laws.

**Riya:** Sir, if action and reaction are equal and opposite, why don't they cancel out?

**Me:** Excellent! Because they act on *different* bodies.

Riya: So if I push the wall, wall pushes me, but both

survive?

**Me:** Exactly. Both feel something, both respond — like relationships.

Riya: Then love is also Newtonian?

Me: Completely. Equal, opposite, confusing, but

beautiful.

Physics is full of relationships — between forces, masses, velocities — each affecting the other silently, perfectly. That's why I call it the most *human* science.

## The Beauty of Balance

Newton didn't just create laws — he created balance. Forces don't fight; they coexist.

Everything you do has a counterforce keeping it in harmony.

You walk because friction pushes you forward as the ground pushes you back.

You breathe because pressure differences let air dance in and out.

The universe works not through dominance, but through balance.

And that's something the modern world forgets — we're obsessed with speed, not stability.

Newton whispers otherwise:

"Find equilibrium. Everything else will follow."

#### The Most Misunderstood Genius

Newton is often remembered as a serious, grumpy man with white hair and a brain bigger than gravity itself. But he was also emotional, even lonely. He once said,

"If I have seen further, it is by standing on the shoulders of giants."

That humility — that awareness that no one creates alone — is what made him truly great.

Students often say, "Sir, I can't understand his laws." And I say, "Neither could Newton at first."

Even he took years to trust his own equations. So if he could doubt and still discover the universe — what's stopping you from understanding one chapter?

## The Emotional Equation: Force of Curiosity

Let's make a new equation today.

## $F(life) = m(you) \times a(curiosity)$

That's it.

The force that moves your life is your mass (potential) multiplied by your acceleration (curiosity).

The greater your curiosity, the farther you'll go no matter your starting velocity.

Newton didn't find gravity because he was forced to. He found it because he refused to ignore a falling apple.

So here's your apple moment—that one thing that drops into your life every day.

It might be a question, an observation, a silly "why." Don't ignore it.

Because your greatest discovery might be hiding behind your laziest afternoon.

#### Newton vs. The Modern Student

Let's compare, shall we?

| Newton's Time        | Your Time                    |
|----------------------|------------------------------|
| Apple fell on head   | Phone falls on face          |
| Calculated gravity   | Calculating board percentage |
| Observed planets     | Observing Instagram stories  |
| Invented calculus    | Inventing excuses            |
| Locked during plague | Locked during exams          |

The difference? He used 1 He used boredom to build ideas.

We use it to build anxiety.

If Newton had TikTok, maybe he'd have made memes about motion — but he'd still be curious.

So next time you scroll endlessly, pause.

Ask: "Why does this work?"

That's where learning begins — in the quiet curiosity

between distractions.

"Newton didn't drop the apple — he dropped ignorance."

## Concept Capsule

- First Law (Inertia): Resistance to change.
- Second Law (Force = ma): Effort creates motion.
- Third Law (Action = Reaction): Karma with math.
- **Gravity:** Attraction between everything with mass.
- **Life Lesson:** Observation > Memorization.

# Why Newton Still Matters

You may think these laws are old, but every technology today — satellites, cars, drones, even your fan — moves because of them.

He didn't just discover physics — he discovered *order* in chaos:

Every time you drop something, jump, or just breathe — you're proving Newton right.

He turned daily life into eternal truth.

And that's the beauty of physics — it doesn't age. It just waits for you to notice.

## The Final Thought

If Newton were alive today, he wouldn't be disappointed with your marks.

He'd be disappointed if you stopped asking why.

He didn't want his laws to scare you.

He wanted them to liberate you — to show that the world isn't random, that there's logic behind every leaf that falls and every dream that rises.

He didn't want you to cry. He wanted you to *see*.

"When you understand a law of nature, you don't just pass exams —
you start speaking the language of the universe."